DETAILS OF AWARDED PROJECTS

SN	Research Theme	Proposal Title	Proposal Description	Project Investigator (PI) Team
1.	Hydrogen (H ₂)	Ammonia Cracking: New Catalyst Development, Reaction Engineering and System Design	 Project aim: To develop more efficient processes to release H₂ from ammonia, by examining the development of robust and efficient ammonia cracking technologies suitable for use in Singapore. Potential benefits: H₂ is difficult to transport in its native state, which requires high pressures and extremely cold temperatures to compress. One way to make it easier to transport is to convert the H₂ into a carrier such as ammonia. However, releasing H₂ from ammonia is an energy intensive process. An improved and more efficient process will reduce the energy penalty of transporting H₂ in the form of ammonia and reduce the cost of H₂ adoption in Singapore. 	PI Institute: National University of Singapore (NUS) Lead Project Investigator: Assoc Prof Yan Ning, NUS Project Team: Prof Chan Siew Hwa, NTU and Asst Prof He Qian, NUS; Academic/Industry Collaborator(s): Surbana Jurong Infrastructure Pte Ltd and NUS

2.	H ₂	Miniature H ₂	Project aim: To develop two types of H ₂	PI Institute: Institute of Microelectronics
<i></i> .	• • 2	leakage and	sensors, a hydrogen purity sensor and a	(IME), Agency for Science, Technology and
		purity sensors	hydrogen leakage sensor, with small form	Research (A*STAR)
		for	factor, high selectivity minimal interferences	
		downstream	and immunity to poisoning for downstream	Lead Project Investigator:
		H ₂ use	use. Standards will also be created for H2	Dr. Doris Ng Keh Ting, A*STAR's IME
		112 036	sensors evaluation and quality.	DI. DOIIS NY KEIT TINY, A STARS IME
			concere evaluation and quality.	Project Team:
			Potential benefits: Improve the safety of H ₂ use, allow deployment of sensors economically to enable trading and safety	Dr Cai Hong, A*STAR's IME; Dr Kai Fuu Ming, National Metrology Centre (NMC), Agency for Science, Technology and
			and increase confidence towards adoption of H2 for downstream uses.	Research (A*STAR); Assoc Prof Zhao Dan,NUS; Dr Liu Jihang, A*STAR's IME; and Dr Subhranu Samanta, A*STAR's IME
				Academic/Industry Collaborator(s):
				Hydrogen and Fuel Cell Association of
				Singapore (TAC)
3.	H ₂	Methane	Project aim: To develop an improved	PI Institute: NUS
		Pyrolysis for	process for methane pyrolysis, i.e. catalytic	
		H ₂ and	cracking and separating natural	Lead Project Investigator:
		Carbon	gas/methane into H_2 gas and solid carbon. It	Assoc Prof Sibudjing Kawi, NUS
		Nanotube	examines development of a novel bi-	
		Production	functional catalytic membrane reactor	Project Team:
		via Novel	(CMR) process, where ultra-pure H ₂ and	Prof Wang Chi-Hwa, NUS; Assoc Prof Yang
		Catalytic	highly-ordered carbon nanotubes (CNTs)	Wenming, NUS; and Dr Chang Jie, Institute
		Membrane	are co-produced via methane (natural gas)	of Chemical and Engineering Sciences
		Reactor	pyrolysis process with zero carbon dioxide	(ICES), Agency for Science, Technology and
		System	(CO ₂) emission.	Research (A*STAR)

			Potential benefits: Methane pyrolysis is a potential pathway to producing low-carbon H ₂ in Singapore. The process is currently costly and energy intensive. If successful, this can reduce the cost of H ₂ production in Singapore whilst producing valuable carbon products at the same time.	Academic/Industry Collaborator(s): Dyna Mac Engineering Services; Sembcorp Industries Ltd; University of California@Davis; Curtin University; Université de Toulouse-Centre RAPSODEE- CNRS and A*STAR's ICES,
4.	H2	Liquid Organic Hydrogen Carriers (LOHCs) Technology for Singapore	 Project aim: To develop new catalysts and systems to reduce the costs of extracting hydrogen from methylcyclohexane (MCH) as an LOHC technology and to design a minimum-cost hydrogen supply chain network for Singapore. Project benefits: MCH can be transported in liquid state at ambient conditions using the existing petroleum infrastructures, but the process to extract hydrogen from the MCH molecule requires high-performance and cost-effective catalyst and is energy intensive. This proposal could improve the performance and reduce the cost of existing SPERA catalyst from Chiyoda and design new reactors of better heat transfer, therefore reducing the cost of importing hydrogen using this carrier. A 	PI Institute: NTU Lead Project Investigator: Prof Xu Rong, NTU Project Team: Asst Prof Tej Choksi, NTU; Assoc Prof Raymond Lau Wai Man, NTU; Asst Prof Paul Liu, NTU; Assoc Prof Alessandro Romagnoli, NTU; Prof Iftekhar A. Karimi, NUS; Prof Farooq Shamsuzzaman, NUS Academic/Industry Collaborator(s): Chiyoda Corporation; PSA Corporation Limited; Sembcorp Industries Ltd; City Gas Pte Ltd; Jurong Port Pte Ltd; Singapore LNG Corporation and Mitsubishi Corporation;
			comprehensive financial model to access	

			the cost of the hydrogen supply chain in Singapore will also be developed by collaborating with our industrial partners.	
5.	Carbon Capture, Utilisation and Storage	Alternative Sand from Carbon Dioxide and Waste	Project aim: To examine the processes for the capture and mineralisation of CO ₂ into alternative sand that can be used for building and construction purposes.	PI Institute: A*STAR's ICES Lead Project Investigator: Dr. Bu Jie, A*STAR's ICES
	(CCUS)	Materials	Project benefits: Captured CO ₂ can be used to make useful products such as construction material in this case.	Project Team: Asst Prof Liu Wen, NTU; Assoc Prof Pang Sze Dai, NUS; and Mr Yeo Tze Yuen, A*STAR's ICES Academic/Industry Collaborator(s): Samwoh Innovation Centre Pte Ltd and
				EnGro Corporation Ltd
6.	CCUS	Capturing waste with waste: Continuous	Project Aim: To develop a carbon capture process (calcium looping) by using novel sorbents derived from calcium-rich incineration ashes, collected from	PI Institute: Nanyang Technological University (NTU) Lead Project Investigator: Asst Prof Liu Wen
		carbon capture using	Singapore's waste-to-energy facilities.	Paul, NTU
		highly efficient sorbents derived from	Potential benefit: This will enable the use of incineration ash, which is a waste material, for CO ₂ capture. Both waste streams: incineration ashes and CO ₂ , can be	Project Team: Prof Simon Redfern, NTU; Snr Scientist Dr Bu Jie, A*STAR's ICES; Asst Prof Grzegorz Lisak, NTU; Prof Lim Teik Thye, NTU; Snr Research Fellow Dr Andrei

		incineration	subsequently turned to sustainable	Veksha, NTU and Snr Research Fellow Dr
		ashes	construction materials after carbon capture.	Chan Wei Ping, NTU
				Academic/Industry Collaborator(s): Surbana
				Jurong Infrastructure Pte Ltd; Mursun Pte
				Ltd; Tsinghua University; and Kunming
				University of Science and Technology
7.	Carbon	Towards	Project aim: To examine the development of	PI Institute: NUS
	Capture,	Energy	a sustainable technology to produce	
	Utilisation	Efficient	important commodity chemicals for	Lead Project Investigator:
	and	Electrochemi	Singapore (e.g., ethylene and propanol),	Prof Chen Wei, NUS
	Storage	cal CO ₂	using only CO ₂ and water as feedstock.	
	(CCUS)	Reduction to	Thus, reduce the energy intensity of	Project team:
		Synthetic	producing chemicals from CO ₂ .	Prof Xu Zhichuan, NTU; Dr Zhang Jia,
		Chemicals: A		Institute of High Performance Computing
		Paradigm	Potential benefits: Converting CO ₂ to	(IHPC), A*STAR; Asst Prof Lum Yanwei,
		Shift in	fuels/chemicals is a potential utilisation	Institute of Materials Research and
		Sustainable	pathway for captured CO ₂ . Reducing the	Engineering (IMRE), A*STAR/NUS; Asst Prof
		Chemical	energy requirement for such processes will	Wang Lei, NUS; and Asst Prof Hou Yi, NUS
		Production	improve the economic viability of such CO ₂	
			utilisation pathways.	Academic/Industry Collaborator(s):
				NUS; Stanford University; Tsinghua
				University and ExxonMobil.
8.	CCUS	Development	Project Aim: To develop more efficient ways	PI Institute: NUS
		and module	to capture CO ₂ from exhaust streams. It	
		scale	aims to develop and validate hollow fiber	Lead Project Investigator:
		validation of	membranes for efficient carbon capture via	Asst Prof Zhang Sui, NUS
		novel hollow	novel chemistry and machine learning. The	_

		fiber membranes for CO ₂ capture	 performance of the developed and scaled membranes will be validated through inhouse pilot testing under simulated conditions as well as field-testing on larger pilot under real-world conditions. Potential benefits: To improve the capture efficiency of CO₂ from existing exhaust/flue 	Project Team: Provost Chair Prof Neal Chung Tai-Sheng, NUS and Dr Gudipathi Chakravarty, START, NTUitive Academic/Industry Collaborator(s): Chevron Singapore Pte Ltd; Surbana Jurong Infrastructure Pte Ltd and NUS
	0.0110		gas which is the first step in CCUS.	
9.	CCUS	Stable and long term	Project aim: To demonstrate a proof-of- concept requiring design, build and	PI Institute: NUS
		carbon	validation of potential of CO ₂ storage in	Lead Project Investigator:
		dioxide	deep-ocean sediments as gas hydrates. It	Prof. Praveen Linga, NUS
		hydrate	will help to validate the possibility of storing	
		based	CO ₂ in deep ocean sediments (as opposed	Academic/Industry Collaborator(s):
		storage (CO ₂ -	to conventional sites which require specific	ExxonMobil; NUS; Purdue University and
		HyStore) in deep ocean	geological formations)	Lawrence Berkeley National Laboratory
		sediments	Potential benefits: This may open	
			possibilities for long term storage of captured CO ₂ .	
10.	CCUS	Process	Project aim: This project proposes a new	PI Institute: NUS
		Systems	paradigm in which materials research is	
		Engineering	conducted under the continuous of Process	Lead Project Investigator:
		for Guiding	Systems Engineering (PSE) in order to keep	Prof Iftekhar A Karimi. NUS
		R&D on Low-	focus on the KPIs right from the start of	
		Carbon	research.	Project Team:
		Technologies		Prof Shamsuzzaman Farooq, NUS

			Potential benefits: It develops digital toolkits that predict the system-level performances of several CCUS and H ₂ projects, helping to guide them to faster and successful scale- up.	Academic/Industry Collaborator(s): ExxonMobil and NUS
11.	CCUS	Adsorptive Carbon Capture Using Framework	Project Aim: To develop more efficient ways to capture CO ₂ from exhaust streams. This project enhances CO ₂ capture by using state-of-the-art framework sorbents engineered for high CO ₂ selectivity, high	PI Institute: NUS Lead Project Investigator: Assoc Prof Zhao Dan, NUS
		Materials	intrinsic stability, and facile regenerability from moisture. Potential benefits: Improve the capture rate of CO ₂ from existing exhaust/flue gas which is the first step in CCUS.	Project Team: Assoc Prof Jiang Jianwen, NUS; Prof Shamsuzzaman Farooq, NUS; Prof Jiang Donglin, NUS; and Asst Prof Grzegorz Lisak, NTU
				Academic/Industry Collaborator(s): ExxonMobil; NUS; and Northwestern University
12.	CCUS	Nanostructur ed Catalysts for Direct CO ₂ Hydrogenatio n to Higher Alcohols and Fuels	Project aim: To reduce the energy intensity of producing higher alcohols and fuels from CO ₂ . It examines development of nanostructured catalysts and computational capability in catalyst design and reaction modelling, including process optimisation.	PI Institute: NUS Lead Project Investigator: Prof Zeng Hua Chun, NUS Project Team: Asst Prof Paul Wen Liu, NTU; Scientist Dr
			Potential benefits: CO ₂ to fuels/chemicals is a potential utilisation pathway for captured	Kelvin M.Y. Kwok, A*STAR's ICES; Asst Prof

CO ₂ . Reducing the energy requirement for such processes will improve the economic viability of such CO ₂ utilisation pathways.	He Qian, NUS; Assst Prof Sergey Kozlov, NUS; and Assoc Prof Jiang Jianwen, NUS
viability of such CO ₂ utilisation pathways.	Academic/Industry Collaborator(s): NuStar Technologies and NUS